Защиты от протечек GidroLock vs Нептун: как правильно готовить этот зоопарк?

Число просмотров: 2 666 

Защиты от протечек GidroLock Premium и Control в силовом щите коттеджа

Набралось у меня материала и ещё на один пост! Теперь, наконец-то, мои руки добрались до того, чтобы рассортировать инфу про зоопарк систем защит от протечек. Ща вы поймёте, почему я так иронично заявил про зоопарк и что тут надо рассортировывать. А первое, с чего мы начнём — так это с концепта защит от протечек. Зачем они вообще нужны, где их можно использовать и какие задачи они могут решать.

Нафига нужны эти системы? Каждый всегда, хех, высказывает именно то, чего боится или о чём думает. Так вот сначала я думал, что системы защиты от протечек нужны для того, чтобы подать сигнал тревоги, если прорвало какую-нибудь трубу в сантехразводке. Скажем, вот сделал ты себе разводку труб, закрыл её дверкой, живёшь себе… а у тебя там чего-то начало капать или подтекать. Тут система-то тревогу и поднимет!

Оказалось, что я не совсем прав. Вот даже если нам сделать под сантехразводкой ровную и герметичную площадку, чтобы на ней собиралась вода от протечек труб, то разве сработает эта система, если вода будет сочиться по капле в час? Ни фига подобного! Оказывается, изначально основное назначение этих систем — более, что ли, бытовое: перекрывать воду, если она перелилась через край ванной, раковины. Например, забилась у вас на кухне решётка раковины остатками еды, отвлекли вас на минутку, пока вы вручную мыли посуду — вода перелилась через край раковины — защита и сработала.

Именно поэтому я так скептически и относился к этим системам защиты от протечек. И даже прямо и говорил, что лично мне они нахер не нужны, потому что я себе поставил краны, которые перекрывают мне сразу всю воду на вводе в квартиру, и поэтому мне уже пофигу, где какая труба лопнет или что где протечёт. А на случай перелива воды из фильтра в чайник у меня есть целая автоматика. Отсылаю всех любопытных именно к этим постам: первая часть и вторая часть, в которых я рассказал весь концепт и то, как он зарождался.

Но это ж понятно, что не все заказчики разделяют этот концепт, поэтому когда-то мне пришлось просто закладывать в щит линии типа «НеОткл: Защита от протечек», а потом уже и начинать ставить эти защиты в сложные щиты. А тут хочешь — не хочешь — разберёшься. И вот, когда я более-менее разобрался, то как раз собрал щит в РадиоЦентр (скоро напишу про него наконец-то), и вскрыл там весь нарыв особенностей защито-протечко-строения. Ща будем разбираться с двумя популярными защитами.

1. Общие идеи и задачки по защитам от протечек. Как чего может подключаться?

Итакс! Чего наша защита от протечек должна делать? Кажется, что просто закрывать краны… но это только если начинать погружаться в тему. На деле, чтобы защита от протечек получилась хорошей и универсальной, надо учитывать (и закладывать при её проектировании) дофига разных функций.

Давайте составим списочек, по которому потом я буду сортировать и описывать фишки Нептуна и GidroLock’а:

  • Определять наличие протечки (сработку датчика). Это можно делать для каждого датчика отдельно (предусмотреть несколько разных входов), а можно забить и по любому из датчиков переходить в статус «Авария». Конечно же системы, в которых датчики можно подключать отдельными группами, будут удобнее, чтобы знать, где случилась протечка.
  • Как подключаются датчики к системе. Совместимы ли датчики между разными системами или типами подключения? Вдруг датчики у нас будут заложены так, что их не получится поменять, а потом мы захотим сменить сам контроллер защиты от протечек?
    В некоторых случаях датчики подключаются проводами. В некоторых — по радио, с имитацией проводного подключения (радиоконтроллер датчиков видится системой как обычный проводной датчик), а в некоторых — вообще по цифровой адресной шине (я таких систем не встречал, но знаю что они есть).
    Чаще всего используются датчики с питанием +12 V DC и выходом типа «Открытый коллектор», поэтому их можно использовать и отдельно от систем протечек.
  • Точно то же про устройство и управление кранами, при помощи которых система перекрывает воду. Краны могут быть взаимозаменяемыми (или их можно подключить к другой системе при помощи развязки на реле), или подходить только под одну систему (как сделано у АкваСторожа).
    Чаще всего краны имеют разные входы питания и управления (питание подаётся постоянно, а если оно же приходит на ещё один вход — то кран закрывается; иначе — открывается), поэтому их можно использовать как нравится. Например, в своих разработках для других задач. Это хорошо! Исключение — АкваСторож, где краны управляются переполюсовкой постоянного напряжения. Например, +/- = открыть, а -/+ = закрыть.
  • Обслуживание кранов. Это то, на чего многие не обращают внимание, но иногда оно нужно: фишка, когда система периодически закрывает и открывеет краны, чтобы они не закисали. Такое есть у ГидроЛока и АкваСторожа.
  • Возможность обхода защиты. Это удобно сделано у ГидроЛока. Называется «Пофигу, дайте мне воду»: система откроет воду даже если есть сигнал протечки. Фишку можно применять, если залитие было случайным и датчик после него ещё не высох, а вода нужна.
  • Возможность вытащить сигнал «Авария» во внешние системы. Например, вот у меня был щит в Алтуфьево, где сигнал от защиты протечек получал Logo, который уже и принимал решение, чего с ним делать: наплевать или закрывать воду.
    Обычно такой сигнал стараются выдавать в виде реле (сухой контакт), но это не всегда так. И про это я расскажу дальше, когда буду рассматривать ГидроЛок и Нептун.
  • Возможность, наоборот, дать команду системе закрыть краны. Это теперь с моей лёгкой руки (я о той истории, которую рассказал в начале поста: про свои краны воды на вводе в квартиру) начало использоваться повсеместно. И это удобно: свалил из квартиры — закрыл воду. Пришёл — открыл.
    Реализовываться это, как обычно, должно в виде сухого контакта. Вообще, сухой контакт — это всегда было стандартом для любых систем управления. Но у разных систем оно реализуется через задницу или не сделано вообще.
  • Корпус. Есть два варианта: или на DIN-рейку (как я люблю) или ставить защиту по месту около стояков. У обоих вариантов есть разные особенности. Например, если мы делаем защиту в корпусе, то нам важно проумать удобное подключение проводов к корпусу так, чтобы это было удобно сделать среди месива труб в сантехшкафу. А если мы делаем корпус на DIN-рейку, то нам крайне важно сделать нормальную индикацию на передней его морде и опять же нормальные клеммы для подключения проводов внутри щита (чтобы они принимали наконечники НШВИ).

В реальности получается так, что я знаю о трёх системах защиты от протечек. Это АкваСторож, который я ни разу никому не ставил. Система сейчас загибается, потому что её краны по управлению не совместимы ни с чем другим. А остальные две — это Нептун и GidroLock. И вот с ними обоими начинается грёбаный зоопарк, как было с реле аварийного напряжения или с SMS-реле.

Суть зоопарка можно описать одной фразой: у Нептуна есть вариант на DIN-рейку, но очень бедный по функциям, часть из которых реализованы через жопу. У Гидролока корпуса на DIN-рейку нет (хотя они обещают его уже как лет пять), зато есть охрененно крутой функционал, но местами реализованный не просто через жопу, а через жопу жирафа. Зато, хех, у обоих систем краны можно использовать как угодно — они хорошо и легко управляются.

И вот если я, как писал раньше, ограничивался тем, что закладывал в щитах только лишь питание на защиту от протечек. А вот в последнем щите в РадиоЦентр мне понадобилось использовать почти все фишки GidroLock’а, которые только в нём есть, а именно: работа защиты протечек по разным зонам (подвал, ввод, котельная, 1, 2 этажи), перекрывание воды, когда в доме никто не живёт и отключение насосной станции и насоса отопления при аварии (протечке).

И вот с некоторыми фишками пришлось помучиться, чтобы встроить этот GidroLock в обычный силовой щит. После этого я и решил написать этот пост. А так как я ещё и прикупил родителям подруги (где проводку в котельной на лотках ваял) простенький Нептун (ибо у них один раз мощно протёк бойлер на 200 литров), то заодно решил и рассказать на Нептун. Вот с него и начнём!

2. Защита от протечек «Нептун»: на DIN-рейку, но простая как палка.

Начинаем — да — с самого простого топора. Нет. Даже палки. Это защита от протечек «Нептун» в варианте на DIN-рейку. Почему это простая палка — вы сейчас поймёте. Я не хочу сильно ругать Нептун, потому что иногда он меня выручает за счёт корпуса на DIN-рейку, но иногда мне хочется плакать от наивности и простоты этой защиты!

Первый раз я столкнулся с этой защитой в Рогаликах (на тех фотках фото щита нету). Там, после того, как мы собрали и подключили щиток, заказчик попросил воткнуть модуль защиты от протечек Нептун на DIN-рейку. И вот уже тогда этот Нептун меня поразил. Я, значится, увидел коробочку, клеммы. Впечатлился. Подумал, что ща оно будет интеллектуальное, различать датчики… хех! Но когда мы ради прикола смолчили один датчик — коробочка всего лишь начала противно пищать и закрыла воду. И — ВСЁ! =) Больше функций не было! =)

И вот только когда я собирал щит в Алтуфьево — я начал понимать, что к чему с этим Нептуном. Давайте разберёмся вместе. И начнём с того, как вообще производители (это касается всех производителей) продают свою защиту. А продают они её как обычные и дрянные маркетологи, рассказывая о том, как всем с этой защитой будет классно и круто (это первое), не вдаваясь в детали. А ещё, что самое важное для нас — это то, что они стараются продавать эту защиту так, как будто она — вещь в себе и обязательно нужно покупать всю комплектуху только у одной фирмы: и краны, и датчики, и контроллер.

То, что система может быть совместима с другими — это её достоинство, а не недостаток. Но часто разработчики системы не думают о будущем и разрабатывают свои системы прямо в лоб. Если кран их производства получает разные фазы на разные направления (как приводы штор), то эти фазы так и выдаются на выходе системы. И подключить к ней другие краны (или вытащить сигнал в Logo/ПЛК) будет проблемно.

Ещё с Нептуном связана история о том, что когда мы собирали с заказчиком первый щит на ПЛК ОВЕН, производитель этого самого Нептуна встал руки в боки и не смущаясь говорил в лицо о том, что его датчики протечки имеют закрытый протокол и никуда, кроме как к контроллеру протечек, их подключить нельзя и работать они не будут. Ну-ну! Это только портит впечатление от компании, и всего-то делов.

Вот чего мы получаем, если берём Нептун на DIN-рейку. У меня датчики как раз и куплены, чтобы котельную родичей подруги обезопасить. Всё это я при случае воткну в щит котельной и выведу контактор на отключение насоса скважины и на звонок на первом этаже =)

Защита от протечек Нептун на DIN-рейку

Вроде как красивая коробочка и датчики, однако, если посмотреть ближе, то появляются кое-какие не совсем аккуратные моменты.

Например, отверстие под выключатель на передней панели прорезано чуть уже, чем надо, и выключатель слишком плотно переключается, из-за чего его приходится доталкивать во включенное положение. Ну и ещё видно что лишние отверстия в месте клеммников не закрыты. Значит туда легко может упать обрезок чего-то (провода, железки) и повредить плату.

Датчик и модуль защиты Нептун на DIN-рейку (примитивный)

А дальше начинается весёлая весёлость. Это я и про подключение и про входные-выходные сигналы этого Нептуна. С чем я хочу разобраться? С тем, с чем разбираюсь всегда: удобство подключения проводов и кабелей и качество (и удобство) клемм для этого подключения. Как-то я про это упоминал в щите про GSM-управление, и ещё и про модули DALI от Helvar.

Вообще, фишка удобного подключения заинтересовала меня с тех пор, когда мы занимались проводкой под ключ и подключали термостаты тёплых полов. Вот что получал этот термостат? Ввод сети (L, N, PE) и выход на нагревательный мат или кабель (L, N, PE). И вот в этих термостатах было сразу же видно, заботился ли производитель о своём продукте или нет.

В некоторых термостатах (этим грешит Unica) фаза клемма нуля была общая, а клемм для PE вообще не было. Предполагалось, что надо будет брать ноль питания и ноль термокабеля и соединять их на одной клемме термостата. Это было жутко как неудобно, потому что всё это надо было запихать в обычный подрозетник (не все могут поставить глубокие), а кабель питания мог быть и на 2,5 квадрата, если его кто-то проложил ошибочно с запасом (большинство регуляторов ТП рассчитано на 10А, и поэтому удобнее закладывать кабель 3х1,5 чтобы он хоть как-то вместился в мелкие клеммы регулятора).

Так вот после этого урока и опыта я многие устройства вида «автоматика на DIN-рейку» оцениваю по этому критерию. Все их содатели, мля, забывают о том, что иногда их устройства ставят в щит (и уж тем более, если это устройство для этой DIN-рейки и спроектированное-то!), а в щите все работают не огрызками проводов, зачищенными зубами, а проводами с наконечниками НШВИ. И вот эти вот НШВИ бывают двойными, потому что иногда нам надо какое-то питание или сигнал подать сразу в несколько мест щита.

Поэтому мой критерий оценки — это, во-первых, удобно выведенные сигналы, а, во-вторых — удобные клеммы. И вот ща мы заценим Нептун, заодно обсудив и схему подкючения к нему датчиков и кранов.

Смотрим силовую часть сигналов:

Контакты подключения сети и кранов модуля Нептун

Чего нам тут бросается в глаза? А вот то хорошее, про чего я только что говорил: клеммы для питания нам вывели отдельно, а для подключения крана — отдельно. Поэтому PE и N у нас имеют свои зажимы и нам не надо цеплять по два провода в одну клемму. А вот то, чего такое NC и NO — мы ещё посмотрим дальше, когда дойдём до схемы подключения этого Нептуна.

Идём дальше. На другой стороне корпуса находятся клеммы для подключения датчиков и сигнала о протечке.

Контакты подключения датчиков (датчика) модуля Нептун

И вот если вы вдруг решили, что Нептун умеет различать разные датчики (и сказали мне: «задействуй мне все три линии датчиков»), то будет вам жестокий облом. Ничего он не различает! Просто тут производитель опять подумал о том, что негоже пихать провода от нескольких датчиков в одну клемму и сделал несколько таких клемм. Для удобства. И это они — молодцы. А вот сами клеммы — обычное гавнище на печатную плату, но терпимое: НШВИ на 1,5 квадрата туда закрутить можно, и даже НШВИ(2) на 0,75, если потребуется.

И теперь разбираемся со схемой и сигналами, которые можно снять с Нептуна. Вот чего нам предлагает сам производитель (схема из инструкции на контроллер):

Схема подключения управления кранами защиты "Нептун" (из инструкции)

И, спрашивается, это ЧО?! Зачем тогда было делать клеммы для N, PE, если сам же производитель предлагает пихать питание крана в те же клеммы, что и питание контроллера? Если уж вывели отдельные клеммы для N, PE — так чего ж для L-то не вывести?! Хрень полная! И суй, получается, пользователь, как дурак, два провода в одну клемму.

Теперь ещё одна гадость — это выходной сигнал Нептуна. Но чтобы с ней разобраться, а точнее оценить всю её заподлянку, я распишу сигналы Нептуна. Вдруг кто-то решит использовать его для какой-то атвоматизации:

  • L, N, PE — это питание. С этим всё поняно, и тут вопросов нет.
  • Краны у Нептуна имеют два варианта подключения (сигналы я назвал условно):
    L, Close, N — питание (L, N) и сигнал закрытия. Обратите внимание, что тут сигнал закрытия — «положительный»: чтобы кран закрылся, его надо соединить с фазой. Это какой-то лютый пиздец! Такой же, как нормально замкнутый контактор: чтобы отключить цепь, на неё надо подавать питание. У Far сделано более грамотно: питание на управляющием входе открывает кран. А если этого питания нету — то кран закрывается. То есть, если по какой-то причине Нептун протупит, но питание на кран будет поступать, то Far’овский кран закроется, а Нептуновский откроется, бля!
    L-Open, L-Close, N — Вроде как такие краны у них были раньше. В этом случае для того, чтобы открыть кран, надо подать фазу на один из проводов, а для того, чтобы закрыть — на другой. Это похоже на обычные приводы штор и рольставен. Удобно ли это? Хрен его знает. Для блока Нептуна, под который эти краны как раз и разработаны — удобно. А вот если мы захотим применить краны от Нептуна в какой-то своей системе — то не всегда. В некоторых случаях нам понадобится переключающая релюшка, которая будет переключать фазу на эти два входа крана.
  • U1, IN, GND — это датчики протечки. Датчики тут с выходом «открытый коллектор» («ОК»): если датчик сработал, то его «IN» подключается на «GND» при помощи транзистора. А U1 — это питание датчика (+12V DC). Поэтому если у вас есть какие-то свои датчики с выходом открытый коллектор и питанием +12V — то их сюда можно без проблем подключить.
    Или наоборот, если вы хотите подключить датчики от Нептуна куда-то (в ПЛК) — то вы собираете схему входов ПЛК для сигналов «ОК» и напрямую тыкаете туда датчики. Это удобно! А если надо заставить Нептун сработать по протечке — то достаточно замкнуть «IN» на «GND» любым контактом. Я, когда щит испытваю — огрызком провода замыкаю.

Вот фотка из инструкции Нептуна, где видна распиновка контактов датчика. А сам датчик закрывает кусочек текста «открытый коллектор, max 50 мА».

Датчик системы протечек Нептун (с выходом открытого коллектора)

Как-нибудь, как минимум для KonstArtStudio, я накатаю пост про всякие УГО на схемах, и там уделю внимание СК, ОК и прочим контактам и типам выходов и входов в автоматике. Но так, как нам прямо сейчас это понадобится, то придётся быстро, на лету, пояснить.

ОК — это открытый коллектор. Мы только что про него говорили. Это транзистор, который соединяет выход с минусом низковольтного питания (GND). Такой выход не развязан гальванически, и он всегда будет связан с питанием того блока, в котором он есть. Соединяется же он с GND для того, чтобы можно было подавать на него какое-то внешнее питание другого вида. Например, устройство питается от +5V, а катушка реле, которой этот выход управляет — от +24V.

Такие выходы делаются при помощи транзисторов, поэтому устройства получаются очень компактные. Но плата за эту компактность — электрическая связь через GND и очень малый ток через этот транзистор.

СК — это сухой контакт — контакт обычного реле, который выведен из устройства наружу. Именно он всегда является нагласным стандартом таких выходов и, если ничего другого не сказано, то все по умолчанию ожидают выходы типа СК. Называют его сухим специально, чтобы показать, что это обычный механический контакт, который вообще ну совсем никак не связан с самим устройством (ведь реле же стоит).

Вот этот контакт удобен для всей автоматизации, потому что реле нам позволяет полностью электрически развязать наши цепи. А ещё реле может коммутировать любые напряжения (конечно же до тех, на которые оно рассчитано). То есть, не будет проблемы из силового устройства через СК коммутировать какой-нить вход Arduino или наоборот — от системы сигнализации управлять контактором с катушкой на 230V.

А теперь оцениваем эту защиту по степени автоматизации. Для меня это означает то, насколько удобно подавать или снимать каке-то сигналы с защиты от протечек для своих нужд. Ну вот например, задачка как в РадиоЦентре: хочу, чтобы когда защита сработает — она не только закрывала мне воду, а ещё и отключала насос скважины, чтобы он не работал на протёкший, к примеру, гидроаккумулятор. Или, например, я хочу чтобы у меня при протечке выдавался сигнал на какое-нить SMS/GSM-реле (Кситал, CCU825, Zont). Или наоборот — по SMS приказать защите закрывать воду. Или закрывать эту же воду, когда из дома все уехали и полное питание щита погашено.

Как это всё делается? Да вот обычно — как раз элементарно, если у нас есть сухие контакты. Скажем, имеет наша защита от протечек выход сигнала «Авария» в виде СК — всё, отлично! Поставили промежуточное нормально замкнутое реле, запитали через него контактор насоса — вуаля. Сигнал аварии появился, сухой контакт замкнулся — контактор выключился.

Или наоборот: имеет защита от протечек вход «Перекрыть воду» тоже в виде СК. Привязали мы этот вход к дополнительному контакту рубильника или контактора — и тоже всё получается. Выключили рубильник — контакт замкнулся/разомнкнулся — вода закрылась.

Эх, мечты, мечты! Вы думаете, что кто-то про это думал вообще? Да вы что! Маркетологи — да, млять, писали кучу охрененных слов (это мы ещё в GidroLock’е мрачно повеселимся), а на деле всё ЧЕРЕЗ ЖОПУ!

Что нам предлагает Нептун? Я зарисовал вам схему его сигнальных выходов и показываю то, как оттуда можно снять какие-то сигналы.

Схема внутренних выходов защиты от протечек "Нептун"

Косяк Нептуна в том, что входа перекрытия воды у него нет ВООБЩЕ. Да, мы можем заставить его сработать по аварии, замкнув через SMS-реле IN на GND. Но так то ж он сработает по аварии и будет противно пищать до тех пор, пока вы не придёте и не передёрните на нём питание. Оно так надо его использовать?

Второй косяк Нептуна в том, что его разработчики прекрасно начали. Как говорят, «начали за здравие, а кончили за упокой». Они поставили отличное реле с переключающим контактом. Именно его сигналы и выведены из Нептуна как NO (Normal Open — нормально разомкнут) и NC (Normal Closed — нормально замкнут). А вот дальше они подумали только о себе любимых (или вообще не подумали). Они подцепили COM (общий контакт) этого реле сразу же к фазе питания этого самого Нептуна.

И вот это вот лютый архпиздец вида «висит груша — нельзя скушать», потому что на выходах NO/NC всегда будет только питание самого Нептуна. Что мне делать, если я хочу использовать NC-контакты для подачи питания на контактор насоса, а контактор у меня должен питаться от другой цепи? А ничего! Ставить, мля, внешнее реле, как я и показал на схемке выше.

Да, у Нептуна есть второе реле, которое даёт нам СК «Авария». Этот контакт замыкается, если есть протечка. Но а если мне надо, чтобы он размыкался? Опять реле ставить! И ведь при этом место на плате нашлось бы. И место для клемм нашлось бы! Но — не сделали!

А ведь я специально рассматриваю именно модель Нептуна на DIN-рейку. Что значит на DIN-рейку? Это значит, что Нептун могут использовать нестандартно! Как угодно! И это значит, что лучше сделать просто несколько групп на переключение на выходе, и пускай пользователь сам соединяет их так, как (и куда) ему удобно!

А если уж дублировать клеммы питания (чтобы не делать перемычки и не подпихивать питание кранов так, как они показали в инструкции), то сразу надо было бы продублировать все три клеммы: L, N, PE. Тогда, если ты хотел бы использовать Нептун штатно — ты соединил бы L с COM и радовался бы. И так можно делать с завода: поставлять мелкую перемычку, как делает НоваТек на своих переключателях фаз ПЭФ-301…

А теперь заглянем внутрь этого девайса для того, чтобы посмотреть, чего он там из себя внутри представляет. Отщёлкиваем верхнюю крышку корпуса, и…

Внутренности модуля защиты от протечек Нептун на DIN-рейку

БЛЯ!!! А ТУТ ТРАНСФОРМАТОР СТОИТ ЕЩЁ!!!! Зачем? Как? Куда?! Уже 21 век давно на дворе! Почему не импульсник с широким диапазоном входных напряжений-то?! Включим логику: трансформатор даёт охрененно крутую гальваническую развязку с сетью. Это хорошо. Но… он крайне нестабильно и хреново работает от UPS.

Плата модуля Нептун на DIN-рейку. Трансформаторный блок питания. Ааа!!

А у нас защита на DIN-рейку, напоминаю — для ЩИТОВ! В том числе и с автоматикой! И иногда (или даже часто) мы заводим себе в щите ПСН — Питание Собственных Нужд, и оно у нас иногда бывает от UPS. Нахрена нам тут трансформатор?

А ещё… а ещё, если присмотреться к фотке — то можно увидеть, что маркировка обоих реле (того, которое управляет кранами и сигнала об аварии) — одинаковая. Значит это оба реле с переключаюим контактом. Дык, спрашивается, почему было не вывести на клеммы сигнала об аварии всеь этот переключащий контакт целиком?! Вон, видно, что этот контакт у реле просто на разведён дорожкой. Что? Не слышу? Из-за трансформатора не удалось разместить компоненты на плате, и они не дают провести дорожку на клемму? А?.. ;)

Задняя часть платы модуля Нептун. Никаких микропроцессоров нет - только суровые транзисторы

Кстати, на плате вы не увидите никакого микроконтроллера. Тут хардкорная схема на транзисторных триггерах. Скорее всего на части транзисторов собран триггер, который штатно находится в состоянии «0», а сработка датчика переключает его в «1». А на других транзисторах собран генератор однотонной пищалки (мультивибратор). Что из этого можно выцепить в плане выводов?

Первое: никакой автоматики тут нет и не будет. Даже автоматического проворота кранов, чтобы не закисали, нету. Второе. На ещё нескольких транзисторах можно было бы собрать логическое «или» с выхода триггера и сделать вход в виде СК, который закрывал бы воду, включая реле. Третье. Если вспомнить книжки с митинского рынка 90ых годов (у меня было их три части про цифровые микросхемы — я тогда ещё в школе учился), то там описывались, млять, генератор сигналов на двух И-НЕ элементах, триггер на них же. И обычно брали микросхему, где было 4 штуки И-НЕ элементов и делали два генератора: один делал сам писк, а второй включал первый так, чтобы писк был прерывистый и лучше привлекал внимание.

Млять! У меня тогда на одной К155ЛА3/74ALS00 так сигнал и ещё на одной поворотники на велик были сделаны! В во время средней, сцуко, школы! На соплях, на изоленте! А тут фирма, которая пиарится в Сети, простой фигни сделать не может! Нахрена собирать триггеры и пищалку на транзисторах, когда можно было взять парочку микрух 4xИ-НЕ, и микруху с двумя D/RS-триггерами (аналог коей был К155ТМ2/74ALS74)? Триггеры был работали как защёлка для сигнала протечки, а на И-НЕ Мы построили бы прерывистую пищалку.

Потом можно было бы выкинуть этот грёбаный трансформатор и воткнуть туда современный импульсный блок питания. Всё равно же PE сюда они заводят для удобства. Тогда эта фигня работала бы при любых напряжениях (тут надо обрадовать производителя о том, что иногда защиты от протечек ставят в дачные дома, в которых бывает и 170 вольт зимой, и в новостройки, где легко может годами держаться 250 вольт), а разводк платы можно было бы переделать так, чтобы силовая часть была с одной стороны, а слаботочная — с другой.

Вот такое вот моё мнение про Нептун. Если кратко — то он мог бы быть простой, лёгкой и удобной защитой в щит на DIN-рейку. Но, блин, из-за того что у него нет нормальных способов им управлять (хотя бы дать ему сигнал удалённо закрывать и открывать воду) я его почти не применяю. И вам не советую, ибо мы переходим к более весёлому девайсу. Но со своим дёгтем в бочке мёда…

3. Защита от протечек «GidroLock»: сложная, но с нестандартными выходами.

И вот всё то, о чём я сейчас говорил — разные неудобные релюшки, отсутствие нормальных сигнальных выходов, возможности закрыть воду удалённо — всё это реализовал GidroLock. Но у него есть и свои заморочки, про которые я буду рассказывать.

Начну с самого ужасного. Мы тут с заказчиками уже ржём, ибо за этот год у меня было около штук 5 заказчиков, которые говорили что звонили в ГидроЛок, пинали их на тему того, когда будет обещанная система на DIN-рейку — и получали ответ, что не скоро или неизвестно когда. А новых заказчиков, которые обожают мне писать мощно выглядящие (но тупые по смыслу) техзадания, и там пафосно ставят строчку «Поставить в щит систему GidroLock на DIN-рейку» я стебу тем, что отвечаю: «Без проблем! Щит будет готов где-то через года три».

В общем, висит на сайте GidroLock вот такая вот картинка ни о чём. Но сама система на DIN-рейку не разработана и не продаётся (на момент написания поста — октябрь 2018).

Обещаемый GidroLock на DIN-рейку (с сайта производителя)

Я хочу помочь им и написать свои пожелания, чтобы система на DIN-рейку и правда получилась хорошей, а не как у Нептуна с его кучей неудобств. Они будут основаны на нормальном жизненном цикле разработки любой микроэлектроники — закладываем универсальное железо (PCB/MCU/CPU), а остальной функционал реализуем прошивкой.

  • Учесть негативный опыт Нептуна в плане входов, выходов и клемм. Так как мы ставим устройство на DIN-рейку в щит, то его и надо будет заточить для щита: сделать такие клеммы, чтобы туда нормально влезал НШВИ(2) на 1,2 квадрата.
  • Учесть негативный опыт Нептуна в плане разводки проводов в щите: сделать отдельные клеммные контакты для ввода сети (L, N, PE), отдельные клеммы для приводов кранов (+U, OUT, GND, PE), отдельные клеммы для всех сигналов (питание и входы датчиков, вход перекрытия воды).
    То есть, так как мы делаем корпус на DIN-рейку, то у нас будет много мест для контактов: сверху и снизу корпуса. Поэтому можно будет сделать всё с расчётом на то, чтобы не надо было подпихивать под два провода под некоторые клеммы.
  • Всю индикацию и информацию вынести на переднюю панель корпуса. На ту панель, которая будет видна при закрытом пластроне щита как на фото. При этом разделить все органы управления на «для пользователя» и «для сборщика щита»: все разъёмы (например SMA для антенны радиодатчиков) вынести под пластрон (тут стоит посмотреть на то, как это сделано у контроллеров Zont), а на видимую часть вынести всю индикацию — но не подключения (тут ориентироваться как раз на фотку самого GidroLock’а)!
  • Позаботиться о том, чтобы не было «зависшего» товара на складах поставщиков, как это было у Меандра с его ошибками проектирования. То есть, на фотке меня напугали фотки разных модулей. Этого быть не должно. Лучше сделать один-единственный базовый модуль, в котором будет тот же функционал, что и в GidroLock Premium/Control, чем кучку модулей расширения под разные задачи. И уже этот базовый модуль дополнять редкими и заказными) модулями расширения. Скажем, радиодатчики нужны не всем — значит модуль радиосвязи пускай будет отдельным. А остальное — будет единым, большим и складским модулем.
    Не надо гнаться за тем, чтобы GidroLock занимал мало места на DIN-рейке. Пусть его корпус будет шириной, например, в 6-8 модулей. Это не страшно!
  • Так как это решается прошивкой — то совместить функционал GidroLock Premium и GidroLock Control в одном модуле на DIN-рейку: пускай где-то (внутри корпуса или со стороны клемм) будет стоять DIP-переключатель режимов работы, а железо останется единым.
  • Подумать про помехозащищённость в плане наводок. Начинка ведь будет стоять в щите, рядом с силовой частью. Что будет, если рядом с проводами от датчиков будет проходить линия питания проточного водогрея на 10 кВт? Надо снабдить входы (которые ща идут напрямую на микроконтроллер) шунтирующими RC-цепочками для защиты от случайных коротких импульсов и диодами Шоттки для защиты от высоковольтных наводок.
  • Все сигнальные реле, которые сейчас продаются как дополнительный аксессуар, внести в корпус и вывести их сухими контактами (СК). Это касается сигнала «ALARM» и… управления кранами! Да! Мы же не забыли, что мы делаем модуль для электрощитов? А значит что иногда нам вместо открывания кранов надо подавать сигнал в ПЛК/Logo/хрен знает куда. Значит нам нужно иметь И выход управления кранами напрямую И переключающее реле этого же выхода.
    Так как GidroLock славится работой от аккумулятора, то эти реле могут жрать большой ток, даже если будут бесполезным. Я бы предложил бы вооружиться тем же DIP-переключателем, про который писал выше и сделать их катушки отключаемыми (но реле ставить, даже если это удорожит модуль): если юзеру они не нужны — он их может выключить и продлить время работы от аккмулятора.
  • Кстати, про аккумулятор! Так как мы делаем модуль для электрощита, то в этот раз не надо морочиться с тем, чтобы поставить в него аккумулятор! Нам важен форм-фактор DIN-модуля. Поэтому лучше просто сделать клеммы для подключения аккумулятора. И пусть дальше юзер сам думает, как и куда его поставить.
    Опять же, стоит посмотреть на некоторые продукты от НоваТек. Там сделано ещё интереснее: есть два входа видов питания: +230 VAC и +12 VDC (например как на регистраторе РПМ-16-43; модель уже устаревшая). И пускай пользователь, например, питает наш GidroLock сразу питанием +12 VDC без всякого аккумулятора, если хочет. А это питание внутри щита/шкафа берёт откуда сам захочет (например у компании «Бастион» есть блоки бесперебойного питания на 12V DC с Li-Ion аккумулятором).

Вот такие мои пожелания. Конечно же, как только я закончу пост — я отправлю его производителю и ОЧЕНЬ надеюсь, что они возьмут отсюда немного идей и мне не придётся объяснять заказчикам что-то вида «Ну, вы понимаете… ага, есть у GidroLock блок на DIN-рейку — но он настолько уебанский и неудобный, что приходится ставить обычный, потому что он — лучше».

А вот теперь начинаем препарировать GidroLock и смотреть, чего он может. Так как мы на Нептуне уже научены плохому, но имеем некий язык терминов, то я сразу выпишу полезные и удобные фичи GidroLock’ов:

  • Хоть немного нестандартная по сигналам, но единая продуманная система блока управления и кранов, в которой учтено много мелочей. Существуют краны разных модификаций и датчики разных модификаций. Всё из электроники они производят сами, а не сидят на чужих решениях. Даже корпуса сами делают.
  • Умеет отслеживать входы адресно (до 8 штук): можно сразу понять, какой именно датчик сработал и куда надо бежать.
  • Умеет в автоматическом режиме проворачивать краны, чтобы они не закисали. А так же делает это при каждом своём включении. Это удобно и круто. Сразу будет видно, если с краном или кранами чего-то не так.
  • Имеет нормальный внешний сигнал для того, чтобы перекрыть воду. При этом это не сигнал, который вызывает состояние «Авария», а штатный режим работы.
  • Имеет режим, когда даже если все датчики сработали, система принудительно открывает воду. Это мне очень нравится: я люблю, когда любой автоматике можно показать, что человек, который её же и создал — главнее и он знает что делает. в реале удобно применять, если случайно мыли пол и залили датчик и влом ждать, пока он просохнет.
  • Умеет выдавать сигнал «Авария» вовне. Этот сигнал можно легко использовать для того, чтобы выключать насосную станцию, если речь идёт о дачном доме, к примеру.
  • Имеет встроенный (и сменный, стандартный) аккумулятор. Вся электроника и краны заточены для питания от этого аккумулятора. Поэтому, если пропадёт внешнее питание, система будет работать ещё некоторое время. То есть, например, если пошёл потоп, залило щит и дифзащита отключила нам питание — GidroLock сможет опознать протечку и закрыть воду. А вот Нептун — нет, хе хе.
    Система следит за зарядом аккумулятора и проверяет его на работоспособность. Если аккумулятора нет или он сдох — то система не включится.

Отдельно дополню, что есть версия системы GidroLock Control — для контроля протечек в замкнутом контуре циркуляции: отоплении или котельной. Делается это при помощи двух счётчиков воды, один из которых ставится на подаче, а другой — на обратке. В этом случае прошивка в модуле будет немного другая (сама плата и все функции остаются те же), и она считает скорость поступления импульсов от счётчиков воды по входам INP1 и INP2. Если скорости начинают отличаться — то система принимает решение от протечке. Это чем-то похоже на работу УЗОшки.

Круто, да? Но не совсем! Потому что при этом всё я не зря с таким хитрым видом написал про то, что система у GidroLock отличная, но немного нестандартная по сигналам. Вот с этого и начинается, собственно, подзголовок поста о том, как надо уметь готовить этот самый GidroLock.

Сразу же скажу про GidroLock Control. Про него так всё красиво написано, но на деле оказывается (при этом на сайте и в инструкции это не особо афишируется — там написано про некие абстрактные «водомеры с импульсным выходом»), что он НЕ работает с обычными счётчиками воды из-за того, что эти счётчики выдают один импульс на сколько-то там литров воды, и это слишком медленно: пока пройдёт десяток импульсов от такого счётчика — там уже воды на целую ванну по объёму натечёт.

Поэтому GidroLock предлагает свои счётчики воды для модуля GidroLock Control, которые более громоздкие и влезут не во всякий коллекторный мать его шкаф! Но при этом сильно это не афишируется, и на сайте и в прайсе GidroLock такой инфы и таких счётчиков нету. И вот так мы на РадиоЦентр и купили это всё. По телефону меня пытались предупредить про это, но я отмахнулся, ибо в инструкции было написано про расходомеры — вот я и подумал, что если специально ничего не указано — то значит что пойдут любые. Так что это дело им тоже надо бы поправить (на сайте и в инструкции).

Теперь идём по более глубоким косякам системы. Так как на DIN-рейку ничего нет (хе хе), то единственное что мы можем рассмотреть — это GidroLock Premium/Control в обычных корпусах. Предполагается, что эти корпуса будут ставиться в сантехшкаф. А значит, всё это будет монтироваться по месту: прикрутят к стене корпус, вставят плату и будут подключать к ней провода.

И вот здесь будут первые маты (к самим особенностям монтажа я ещй вернусь). Система сделана РАЗБОРНОЙ и МАЛЫХ РАЗМЕРОВ! Млять!!! Ну вот что ж такое? У всех разработчиков этих систем защит от протечек те, кто занимается корпусированием что? Больные агорафобией [боязнь открытых, просторных пространств] гремлины, что ли?! Как будто если корпус будет более просторным, то те, кто в этом корпусе живут, сразу умрут от панической атаки?! Эту защиту даже на монтажной панели в просторном силовом шкафу невозможно монтировать без «ёб твою мать» и желания врезать по ней молотком, а потом — вбить гвоздь в голову тех, кто это вообще выдумал.

Дело в том, что модуль (контроллер) защиты состоит из отдельных компонентов, которые собираются воедино. А именно:

  • Задняя часть корпуса. В неё вставляется плата контроллера на пазах.
  • Крышка корпуса. В ней находится выключатель питания, который подключается к плате на разъёме.
  • Фланец ввода проводов. Он, падла, вставляется в крышку корпуса, а не в заднюю часть. И поэтому обожает выпадать в самый неподходящий момент.
  • Аккумулятор. Тут… да блин, чего всех жалеть? Его крепление — это просто вопиющая ебанина! Потому что он встаёт в распор между упором на корпусе и платой. Чего-то не так пошевелил при монтаже — он выпадает, и за провода сдёргивает за собой плату. А остальные провода — крышку фланца! Позже я покажу это всё в действии, гы гы!

Я за от и ругаюсь! Ну, блин, ну чего вам не сделать корпус побольше?! Напоминаю производстенный цикл любого изделия, очень грубо: конструирование — проверка — производство — продажа — установка — наладка — эксплуатация — обслуживание — ремонт — демонтаж — утилизация. И даю жёсткий и реальный пример: чем меньше корпус, тем больше соблана у всяких горе-мастеров запихать его туда, куда не влезет корпус большего размера, так? А через некоторое время, когда они его туда запихают и всё подключат, настанет время менять аккмулятор, потому что он тут никель-кадмиевый, а они живут обычно 3-4 года, потому что обладают памятью и «запоминают» своё зараженное состояние иногда навсегда, потом теряя ёмкость.

И вот решили вы заменить аккумулятор. Как вы думаете, есть ли у корпуса НЕвыпадающие винты? Или там мелкие саморезики по краям стоят? Верно! Конечно же, невыпадающих винтов или защёлок нету! Только сраные саморезики, которые потерять очень легко. А у нас сантехшкаф зашит, а у нас инсталляция и нет знакомого удавчика Гоши из зоомагазина «Динозаврик» на Щёлковском шоссе, который так обожает лазить по всяким щелям и дырам.

А дальше мы открыли корпус… и на нас выпала вся его начинка! Так как фланец ввода проводов вставляется (!!) в крышку, то он и оттуда тоже выпадет. Провода не будут ни чем держаться, и вся конструкция свалится вниз. Какова вероятность того, что пока плата с нежной SMD-начинкой будет падать между трубами и их креплениями вниз, на ней чего-то не оторвётся, а?! Ну и чтобы совсем порвать корпус — то задам ещё один вопрос: чего будет, если аккумулятор потечёт?! Он же прям в плату упирается. Значит — зальёт и плату. И сгинут 5 тыр рубчиков ни за понюшку табаку!

Я люто ненавижу GidroLock именно за этот уебанский корпус! Вот почему было не подумать это всё заранее? Почему не сделать такой корпус, в котором плата будет располагаться так, чтобы клеммн… Так! Про это мы ща ещё поговорим! Корпус, где аккумулятор будет фиксироваться в отдельном отсеке, отделённом от платы? Где плата будет фиксироваться к дну корпуса и не выпадать? И где все провода и кабели будут СНАЧАЛА фиксироваться, а ПОТОМ — подключаться? Хосподя! Почему, почему все производители всегда думают только о себе? Почему они думают о том, что если выпустить просто устройство — то мы будем рады? Ребятааа! Очнитесь! Век просто устройств давно прошёл. Сейчас идёт эпоха дибильных устройств, в которой важен мелкий сиюминутный функционал и концепт «сломается — заменим». Но рано или поздно будет понятно, что дешевле купить одно продуманное устройство, чем дохрена мелких. И поэтому те, кто это вовремя сообразит — будут молодцы.

Идём дальше! Дальше — клеммы и сама начинка GidroLock. Пару слов про электронику. В ней всем рулит микроконтроллер. Поэтому-то, меняя прошивку, можно получать разный функционал одной и той же платы. Блок питания от сети 230V — импульсный (однако ради мелкого размера платы никаких конденсаторов X1/X2 и варисторов там не стоит — это плохо). Цепь сети 230V и цепь питания аккумулятора защищены предохранителями. Все подключения выведены на клеммы или разъёмы.

Но кое-где есть разные западлЫ. Например на фотке две платы. На одной вы видите два рвзъёма снизу, а на другой их нет. Про этот приятный сюрприз я расскажу чуть ниже. Это так различаются разные партии плат; разработчики вдруг решили вывести часть сигналов на разъёмы для большего удобства (а на деле — потому что из-за размера корпуса уже нельзя сделать плату побольше).

Платы модулей защиты от протечек GidroLock Premium и Control

Ну а теперь самое вкусное *потирает руки*! Как у нас плата расположена в корпусе? Ребром она у нас расположена! Как быть с подключением сигналов, если всё это находится внутри узкого сантехшкафа? И почему клеммы для кранов вообще стоят боковые? Чем это поможет-то?

Клеммы для подключения модулей защиты от протечек GidroLock Premium и Control

При этом, одновременно с такими косяками, почти все сигналы тут выведены очень удобно и хорошо. Например, GND есть во всех нужных местах: и около сигнала FUN, и около сигнала ALR, и около датчиков протечек. А вот клемма для PE только одна, хотя блок питания импульсный и у него должен быть мелкий фильтр на вводе, которому требуется PE. Как быть, если мне надо подать PE и на плату GidroLock и на краны? Пихать их под одну клемму? Вот тут уже видно, что сначала сделали корпус и плату, а потом стали понимать, что многое на эту плату не влезает.

Сами клеммы — мелкие! Они с трудом принимают НШВИ(2) на 0,75 квадратов, который туда и не лезет-то до конца.

Клеммы модулей GidroLock: провода в них еле-еле влезают

А в боковые клеммы его вообще с трудом можно вставить, потому что, как видно на фотке ниже, из-за того что ему мешает соседний ряд клемм, наконечник встаёт под углом и запихать его в клеммы можно только пинцетом с сильными матами.

Клеммы модулей GidroLock: провода в них еле-еле влезают

Это всё ОЧЕНЬ плохо! Эта плата предполагает то, что сюда будут пихать провода безо всяких наконечников вообще. И, значит, провоцирует на риск того, что плохо скрученные жилки проводов не войдут в клемму и могут закоротить на соседние. А для щитов такой модуль еле-еле пригоден, потому что внутри щита как раз-таки все линии и ведут проводами, обжатыми в наконечники НШВИ. И ещё, напоминаю, что всё это придётся монтировать в узком пространстве сантехшкафа.

Вообще, основной косяк GidroLock’а в том, что их модуль требует раз в пять большего пространства для манипуляций с ним по сравнению с тем пространством, которое он сам занимает. Простыми словами: да, его можно запихать в очень узкое место. Но при этом, чтобы подкючиться к нему или обслужить его, понадобится большое свободное пространство и доступ к модулю с трёх сторон. Если бы корпус сделали более просторным и закрепили бы в него плату горизонтально — то доступ к ней был бы только спереди — с одой стороны, которая доступна, если снять крышку корпуса.

Теперь изучаем третье западлище. Это — сигналы GidroLock. Вот с этим тут будет полнейшая засада, ибо весь GidroLock сделан по стандарту TTL логики с активным низким уровнем. Это когда для того, чтобы система активировалась, надо входы замыкать на GND, а не на +VCC. Такое было очень (да и сейчас) популярно для разных микросхем и цифровой логики, потому что если оставить вход неподключенным, то даже если на него будет идти наводка, то при инверсной логике он не активируется, а при прямой — активируется сам по себе.

И вот это всё ну… не то, чтобы сильное западло, но некая совсем нестандартная особенность ГидроЛока. Которая точно так же распространяется ещё и НА ВЫХОДЫ!!! Все выходы здесь — это ОК (открытый коллектор), а не СК (сухой контакт). То есть, когда выход активируется — то он подключается тоже к GND внутреннего источника питания GidroLock! Поэтому все финтифлюшки вида «Йохоу! Ща мы возьмём сигнал аварии и отдадим его в ОПС или на контактор насоса» будут жёстко и жестоко обломлены! При этом в инструкции всё это прописано абстрактно в виде «есть выход сигнала авария», а все знаю, что если выход специально не указан — то по умолчанию это всегда СК.

Вот какие сигналы используются у GidroLock:

  • L, N, PE — питание 230V сети
  • Два торчащих провода для аккумулятора
  • +U, +U1 и прочие — это выход от источника питания +12V DC. Можно использовать для питания кранов, датчиков, реле или ещё чего-то. Это питание резервируется от аккумулятора.
  • GND — общий, минус встроенного источника питания. Эти клеммы продублированы в разных местах платы, но это одно и то же.
  • OUT — выход типа ОК для управления кранами. Активируется (соединяется с GND), когда краны должны быть закрыты.
  • FUN — сигнал закрывания кранов вручную (надо соединить с GND). Если краны закрыты этим сигналом, то система не переходит в статус «Авария». При этом, если подан сигнал открытия, а есть протечка — система, конечно же, краны не откроет.
  • ALR (ALARM) — выход типа ОК для сигнала «авария». Активируется, когда сработал какой-то из датчиков протечки. Если краны закрыты по FUN — то не активен.

Оценили западлище? Система будет работать только со штатными кранами на 12V DC. Хочешь поставить краны на 230V AC? Городи реле или какие-то развязки! Сначала, когда я задумывал пост, я думал это всё обматерить и думал о том, что GidroLock система закрытая и ни хрена не удобная. Но сейчас я понял, что задумка разработчиков была в том, чтобы сделать всю систему такой, чтобы она могла полностью работать от аккумулятора: и краны, и датчики, и все входные и выходные сигналы.

Именно поэтому тут все сигналы выдаются как ОК: мелкий транзистор не жрёт так много тока с аккумулятора, чем релюшка (да и её тут некуда вмещать из-за мелкого корпуса). И именно поэтому я предлагаю в версии на DIN-рейку поставить-таки эти релюшки на все выходы (параллельно с ОК), но сделать их отключаемыми, чтобы они не жрали заряд аккумулятора, если не будут использованы.

Глянем в краны. Вот кусочек подключения крана с сайта производителя:

Схема сигналов кранов защиты от протечек "GidroLock" (с сайта производителя)

Видите, и тут инверсная логика? Чтобы кран закрыть — надо соединить его сигнал с GND. Как это реализовано? А просто: внутри крана стоит тоже электроника с микроконтроллером, который всем и рулит. Вот фотка с сайта производителя, где это видно:

Устройство кранов защиты от протечек "GidroLock" (с сайта производителя)

А вот тут мне попался обзор устройства этих кранов. В общем, краны, если надо — можно будет использовать в своих системах на 12V без проблем. И это ОЧЕНЬ хорошо!

А вот если мы захотим достать какие-то сигналы для того, чтобы использовать их в своих системах — нам придётся потрахаться. Для этого надо будет каким-то путём изобретать и ставить внешние реле с катушкой на 12V и с шунтирующим диодом (чтобы не выжечь транзистор выхода ОК). Вот как это может выглядеть:

Схема внутренних выходов защиты от протечек "GidroLock"

Плюс тут — что все релюшки можно подключить и запитать от штатного аккумулятора системы. И они будут выдавать выходы типа «СК» во внешние системы всегда, пока жив аккумулятор GidroLock’а. А минус — в том, что логика всё равно будет инверсная и противоречить правилу силовой автоматики, которое говорит: если система выключена или находится в исходном положении, то все контакты обязаны быть разомкнутыми. У нас же будет наоборот: если мы хотим выключать насос при помощи GidroLock, то нам придётся использовать контакты COM-NC релюшек, ибо эти релюшки будут выключенными, если аварии нет или если краны надо держать открытыми.

И как раз о релюшках. Я же ставил эти GidroLock’и в щит, где они у меня должны были не только закрывать краны, а ещё и по сигналу аварии отрубать насос скважины и насос отопления. А значит, мне как раз надо задействовать сигнал «ALR/ALARM». И вот, так как мануал был мутный, заказал я обычные релюшки на 230V, чтобы через них коммутировать катушки контакторов. А в последний момент выяснилось всё это западло с выходами типа ОК.

Как же мне повезло, что у меня валялись свои собственные релюшки типового размера с катушкой на 12V DC! Они отлично подошли в колодку от реле CR-P, и даже индикаторные модули на +12V DC нашлись! Берём такую релюшку и подключаем её к контактам «+U1» и «ALR». Замыкаем любой INP на GND — и вуаля! Система пищит, реле включается!

Подключение выхода тревоги по протечке к модулям GidroLock

Но это — с той платы, где сигнал «ALR» выведен на клеммы. А у другой — разъём. В инструкции написано адски пафосно, что это разъём аж для GSM-модема (!!), радиопрёмника и всяких систем автоматизации. Ну да, не иначе там RS-485 или I2C. Щазз! На деле на разъём выведено (слева направо по фотке ниже):

  • GND — общий, минус питания
  • +U — питание +12 VDC
  • INP1/INP2 — Один из входов (зависит от разъёма: первый или второй)
  • ALR — сигнал «Авария»

То есть, всё тупее некуда: по сигналу «Авария» можно дёргать… кхм… модем?!, чтобы он отправил нам SMSку. Или наоборот — от SMS/GSM-реле (так это правильно называется) дёргать один из входов, чтобы имитировать протечку и закрыть воду. А чего FUN не вывели-то?

Разъём (HK-04) для подключения выходов тревоги модуля GidroLock

И тут маркетологи GidroLock сделали ошибку. Потому что, млять, концепт поменялся так, что у них продаются разные модули, которые подключаются к этим разъёмам. В том числе и модуль «реле». А что мы помним? А мы помним, что наша защита должна монтироваться в какой-то жопе (читайте: забитом до отказа трубами сантехшкафу), и поэтому нам крайне важно было то, чтобы наша система была в одном общем корпусе и не расползалась как гидра. А ща получается, что чтобы вытащить себе сигнал аварии на управление контактором, я должен уже купить модуль реле и куда-то его прибить рядом с основным модулем. Нафига?

В общем, я выматерился в очередной раз на… не на модули. А на этот разъём. Нахрена его вообще было делать, если те же сигналы можно снимать с клемм, как это сделано на другой плате-то?! Матернулся и срочно поехал в магазин искать разъём. Нашёл! Марка разъёма — HK-04. В большинстве магазинов вы его найдёте. Я себе купил сразу десяток на всякий непредвиденный случай. Протестировал и сделал проводок для подключения реле в щите:

Шлейф для подключения реле статуса протечки к GidroLock

И вот теперь мы переходим к тому, с чего начинали — к ужасным корпусам и к тому, как это всё приходится монтировать в силовые щиты, потому что GidroLock всё обещает нам вариант защиты на DIN-рейку. Как, как? Монтажная панель!

Крепим корпуса модулей GidroLock на монтажную панель

Самое ужасное, что эти два GidroLock’а сожрали место в 36 DIN-модулей. Просто из-за того, что они не на DIN-рейку. Вот как-то так! =) Прикрутил я их на монтажку, на 4 винта, а не на два, как сам производитель предлагает. Место вокруг обклеил остатками миниканала DKC DN-A, чтобы всё было красиво и было чем закрепить провода.

И вот как раз про провода я сейчас и скажу. Это касается не только способа монтажа GidroLock в щит, а вообще его монтажа на любой поверхности. Как принято делать монтаж проводов или кабелей? Вот как: устройство надёжно крепится и не трогается. Провод или кабель заводится в его корпус (клеммную коробку, силовой щит — для примера), разделывается, обрезается на нужную длину по месту до клеммы, зачищается, обжимается и подключается.

То есть, сначала мы ведём провод/кабель в какой-то трассе — коробе, гофре, лотке, а потом оставляем его хвостик, который потом по месту подрезаем. С GidroLock это не проходит и вот почему.

Первое дерьмо — ввод проводов, который имеет мелкие отверстия и который вставляется в крышку корпуса (в нижней части корпуса он не держится). Это решение — полный мрак и ад монтажника, потому что получается что вам надо оставить некоторый запас проводо для того, чтобы пропустить их через этот ввод и открывать корпус, потом подключать эти провода, а запас куда-то девать.

Фланец крышки модуля GidroLock неудобен и бестолков

В итоге я этот ввод просто выкидываю, если ставлю GidroLock в щит: там он не нужен, как и герметичность корпуса.

Второе монтажное западло — это особенность расположения клемм на плате, из-за которой плату приходится вынимать из пазов, чтобы подключить к ней что-нибудь. А значит точно подрезать провода получится по такой схеме (для каждого провода): ставим плату назад в пазы, отмериваем провод, отрезаем его, вынимаем плату и подключаем. ПИЗДЕЦ! ЛЮТЫЙ!!!

И вот как это выглядит для GidroLock Control (отопление). Двойные НШВИ для питания сети, разъём для сигнала «Авария», выходы на краны и входы от счётчиков воды. Всё — чуток проводов проложили — и на плате места нет!

Много соединенией к плате GidroLock - еле-еле влезает

А теперь смотрите, как охрененно круто монтируется всё это в корпус! Сначала мы ставим платы в пазы. Потом подключаем аккумулятор, который может висеть на проводах, упасть и уронить за собой плату, как я писал выше.

Ставим плату GidroLock в корпус (монтаж в силовой щит)

После этого вы берёте аккумулятор и вставляете его враспор между платой (там с этой стороны бумажка) и пазом на корпусе. Тут главное не чихать и даже не дышать, потому что держится это только на честном слове. Оцените место для проводов со стороны клемм. Вот как подлезть к клеммам, если надо что-то добавить или прозвонить? Никак! Только снимать плату!

Вся начинка GidroLock собрана, виден огромный пучок проводов, который не помещается в корпус

Дальше мы начинаем ставить крышку корпуса, подключив разъём выключателя питания на плату. Этот разъём мешает проводам сетевого питания, поэтому их приходится раздвигать. Одно неловкое движение — и вся начинка, как макароны, выпадает из корпуса в руки!

При попытке открыть корпус вся начинка GidroLock вываливается

А после оказывается, что корпус был не готов к подключению всего лишь четырёх входов, кранов и сигнала «Авария»: его начало пучить, потому что провода туда просто не влезли.

GidroLock установлен в силовой щит и его корпус закрыт. Видна вспученность от проводов

Дальше надо дописать «…а теперь представьте, что это же происходит в узком, пыльном шкафу через сантехлючок» и пойти убиться об стенку.

А на деле, если сранивать, то получается, что несмотря на такие вот крупные и при этом глупые и архаичные косяки, GidroLock остаётся самой удобной и лучшей системой для защиты от протечек, у которой нет альтернатив по наличию всех сигналов, питанию, управлению кранами и связью с внешним миром. Но только вот надо уметь с ней обращаться, про что я тут и писал.

Не знаю, на что это больше похоже: на «мыши плакали и кололись, если кактус, потому что больше нечего было кушать», или на такую вот кривую и суровую реальность, которая отличается от задуманного. Но, ИМХО, эту систему надо доработать именно с точки зрения монтажника. И уже потом делать версию на DIN-рейку без этих ошибок и без ошибок Нептуна.

Если вас заинтересовала информация из этого поста и вы хотите со мной связаться (или заказать Сборку щита / Консультацию/Мастер-Класс), то пишите мне на почту info@cs-cs.net или звоните на +7-926-286-97-35 (c 10 до 20 по Москве). На SMS и почту, написанную в одну строчку, я не отвечаю. Отзываюсь на имя Электрошаман.
Невнимательных, тупых и наглых продаванов и менеджеров я буду жёстко стебать, если они не заглянут в инфу про контакты для организаций, а скорее кинутся звонить.

5 Отзывов на “Защиты от протечек GidroLock vs Нептун: как правильно готовить этот зоопарк?”


  • 1 nikandvlad  [Казань]

    Сервопривод крана у меня вызывает вопросы: слишком слабый мотор, через несколько лет простоя крана в открытом положении он может и не провернуть уже кран.

  • 2 CS  [Москва]

    Интересно, вот чем ты читал пост? Точно глазами-то? Я ж писал, что система предотвращает закисание.

  • 3 aMster

    И эти люди запрещают мне ковыряться в носу!
    Действительно, лютый пиздец.
    На самом деле его легко побороть — надо разработчиков регулярно отправлять на монтаж оборудования, чтобы они «в поле» почувствовали как оно.
    Я прекрасно понимаю почему они (гидролок)сделали такое поделие — оно прекрасно собирается на столе, и с обрезкой проводов можно не париться — подключил к главному прибору (гидролоку) — а потом уже по месту обрезал ( с другой стороны)
    Чуть в сторону — приходили мне распредпанели на -48В. производства фирмы Штиль. эти альтернативно одаренные разработчики закрепили шину «-» в открытом доступе сзади панели. (ну это как фазу сделать открытой шиной снаружи щитка)- то есть уронил я отвертку между шиной и корпусом — и пока провод в 16 квадратов не стекет на ботинки — оно будет светиться. ибо там аккумуляторы на 500А/ч стоят.
    Пришлось переделывать — ставить шину на автоматы.
    В общем разработчиков надо заставлять ручками работать — глядишь поумнеют.

  • 4 Caesarion  [Новосибирск]

    Для полноты картины: обзор кранов «Нептун Бугатти про» на 12 В (версия 2014-2015 годов). Кратко: к механике вопросов нет, а вот электроника выходит из строя, и на почту «Нептун» не отвечает.

  • 5 Gride

    А что за зеленая полоска под аккумулятором? Уж очень похожа на двухсторонний скотч.

    Р.С. Если бы ФАР еще приводы сделал на +12 вольт. А то у них только переменка на 220 и переменка на 24 вольта. От меанвелловского блока питания с функцией бесперебойника хрен запитаешь.

Оставить отзыв

Вы должны войти на блог, чтобы оставить комментарий.